

Abi Nareshkumar Simran Munde Pouriya Jafarpur Farabi Bashar Mohammad Fazeli

RYERSON UNIVERSITY

Team Elevate

Office Building Division | TRCA Satellite Visitors Centre and Office

SITE & LOCATION

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Conclusion

SITE PLAN

Site area: 325 hectares

Building Area: 41,660ft² (3,870 m²)

OUR VISION

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Present

Proposed

Future

DESIGN GOALS SET & ACHIEVED

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Net-0 Operational & Lifetime Carbon

Net-0 Energy

Net-0 Water

Disassembly & Reassembly

Occupant Health & Wellbeing

Educate

Circular Economy

Minimal Impact on land & Positive Community Contribution

BUILDING FORM SEQUENCE

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

EXTERIOR DESIGN

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

West Façade WWR: 28%

East Façade WWR: 29%

Vertical Wood Siding

Transparent Glass

Mirrored Exterior Finish

South Façade WWR: 33%

North Façade WWR: 7%

Conclusion

SOUTH ELEVATION

BUILDING PROGRAM PRINCIPLE

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

FLOOR PLANS

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

FLOOR PLANS

Conclusion

10

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Conclusion

INTERIOR RENDERS

Ground floor service room and main staircase

Ground floor multi-purpose conference hall

View from second floor main staircase

View of green wall from second floor

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Conclusion

INTERIOR RENDERS

View of second floor private offices

View from fourth floor open workstations

View of third floor open workstations

View from top of fourth floor main staircase

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Conclusion

STRUCTURE

Concrete Precast Panel cores

Glue-Laminated •-Timber (GLT) Beams

Glue-Laminated •····
Timber (GLT) Columns

Timber Concrete
Composite (TCC) floors

PANELIZED MODULAR ENVELOPE CONSTRUCTION

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and **Environmental Quality**

Occupant Experience

Integrated Performance

Market Analysis

EAST ELEVATION

WEST ELEVATION

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and **Environmental Quality**

Occupant Experience

Integrated Performance

Market Analysis

BULK WATER BARRIER VAPOUR BARRIER ENVELOPE CONTROL LAYERS AIR AND WEATHER BARRIER THERMAL BARRIER R VALUE - 45 EXPOSED HVAC DUCTS BELOW/ADJACENT TO BEAMS 6" x 18" GLULAM BEAM BOLTED WITH METAL CONNECTORS TO 16" X 16" GLT COLUMN 7" 5 PLY CLT PANEL 3" LIGHTWEIGHT CONCRETE TOPPING 9 1" GUTEX THERMOSAFE WD RIGID FIBERBOARD INSULATION - ŚLOPED TOWARDS DRAIN PRO CLIMA WRB STONE BALLAST ROOF TOP PV PANELS @ 38 DEGREES EFFECTIVE R VALUE - 47 ¾" GYPSUM BOARD 2" x 4" SERVICE CAVITY (OPTIONAL DENSE PACKED GUTEX THERMAFIBER WOODFIBER INSULATION) VAPOUR RETARDER PREFAB OSB PANEL WITH 6" DENSE PACKED GUTEX THERMAFIBER WOODFIBER INSULATION (38kg/m³) 2" GUTEX ULTRATHERM RIGID FIBERBOARD INSUI ATION WEATHER RESISTANT BARRIER (Pro clima) 1" WOOD STRAPPING EXTERIOR FINISH (RECLAIMED WOOD SIDING OR ACM PANEL WITH MIRROR FINISH AT FIRST LEVEL) TRIPPLE PANE WINDOW WITH TIMBER FRAME AND LOW-E COATING (R-VALUE: 7) ATTACHED TO RIGHT: 20" DEEP LIGHT SHELF ATTACHED TO LEFT: 40" DEEP STATIC BI-FACIAL SOLAR PANEL WHICH ALSO ACT AS SOLAR SHADING • GLT COLUMN 16" x 16" 3" LIGHTWEIGHT CONCRETE TOPPING -0.4° 8.4° 17.1° 25.9° 34.7° 43.5° 52.3° 61.0° 69.8° R VALUE - 46 INSIDE 3" LIGHTWEIGHT CONCRETE TOPPING -18.0° -13.1° -8.3° -3.4° 1.5° 6.4° 11.3° 16.1° 21.0° C 7" 5 PLY CLT PANEL 9¹/₇" GUTEX THERMOSAFE WD RIGID FIBERBOARI INSULATION WEATHER RESISTANT BARRIER (Pro clima) 31" X 31" CONCRETE FOUNDATION PILE CONNECTED TO GLULAM COLUMN (16"X16") BY BOLTED METAL

Roof R-value: 45 ft2°F·h/BTU (RSI VALUE: 8 m²K/W)

Wall R-value: 47 ft²°F·h/BTU (RSI VALUE: 8.3 m²K/W)

Window R-value: 7 ft2°F·h/BTU

(U VALUE: 0.8 W/m²K)

Ground Floor R-value: 46 ft2°F·h/BTU

(RSI VALUE: 8.2 m²K/W)

HVAC Systems Simulated Through Open Studio

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Energy Use Intensity of Proposed Model vs. Alternative HVAC systems

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

BUILDING ENERGY SIMULATION

		d Designed enewables)	Solar Decathlon	Toronto Green Standard (TGS) Tier 4
	(50.0.0		Requirement	Requirements
	Conversion	Conversion		
	Factor 1	Factor 1.96		
Source EUI	20 kBtu/ft ² (62 kWh/m ²)	39 kBtu/ft² (123 kWh/m²)	96 kBtu/ft² (303 kWh/m²)	_
Site EUI	20 kBtu/ft ²	(62 kWh/m²)	_	20.4 kBtu/ft ² (65 kWh/m ²)
TEDI	4.4 kBtu/ft²	(14 kWh/m²)	_	4.7 kBtu/ft ² (15 kWh/m ²)
GHGI	0.5 lbCO ₂ e/ft ²	(2.2 kgCO ₂ /m ²)	_	$0.91 \text{ lbCO}_2\text{e/ft}^2$ (4 kgCO ₂ /m ²)

A baseline represents a typical modern building. (EUI before renewables).

Target EUI is 20 based on a 82% reduction

BUILDING SUMMARY

 LOCATION
 Vaughan, ON
 L4L 1A6

 USES
 Office
 33,282 sq.ft (100.0%)

RESULTS	BASELINE	YOUR BUILDING	
EUI % Reduction from Baseline	0%	82%	
Zero Score	100	19	
Site EUI (kBtu/ft²/yr)	107	20	
Source EUI (kBtu/ft²/yr)	167	31	

SIMULATION RESULTS

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Energy Use Breakdown

Plug Load Densities:

0.28 W/ft² (3.0 W/m²)

Lighting Power Densities:

 $0.5 \text{ W/ft}^2 (5.4 \text{ W/m}^2)$

Conclusion

18

RENEWABLE ENERGY GENERATION

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Carport from southwest parking

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Conclusion

ANNUAL PRODUCTION

	Production (MWh)	Production (kBtu/hr)	Tilt	Number of PV Panels	Power (kw)	Power (Kbtu)	Source
Roof Top	85	290,020	38°	124	70	239	Canadian Solar
Carport	252	858,800	0°	400	228	778	Canadian Solar
Shading	19	65,481	0°	60	70	239	Solaronix
Total	356	1,217,031					

EUI after - 45.6 - 14.5 Net
Renewables kwh/m² kBtu/hr ft² positive

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

SELF SUSTAINING BUILDING- NET-O ENERGY & WATER

Total Greywater Demand (Washroom + Irrigation)	Total potable water demand (Kitchen+ Dishwasher+ showers+ Washroom Sinks)	Rooftop Collection	Underground Wells	Total annual water demand	
392 m³/yr	692 m³/yr	643m³/yr		1,084 m³/yr	
103,555 gal./yr	182,807 gal./yr	169,863 gal./yr		286,363 gal./yr	
Filtered using Filter 2	Filtered using Filter 1	Filtered using Filter 2	Filtered using Filter 1		

Table: Potable and non-potable water demand of the building

Water Generating systems

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Conclusion

ELEVATED BUILDING STRUCTURE

DISASSEMBLY & REASSEMBLY

Unique QR code "tag" for all • materials

Elevated 15 inches from the ground since the site is a possible future flood plain

GLOBAL WARMING: CRADLE TO GRAVE

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

GLOBAL WARMING: RESOURCE TYPE

- Biogenic carbon storage value (Mass Timber) = $810,971 \text{ kg CO}_2\text{e}$ (sequestering carbon)
- NET-Zero Energy Building = Zero Operational Carbon = Lifetime NET-Zero Carbon Building

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

AIR PURIFICATION- NATURAL VENTILATION & BIOPHILIC

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

DAYLIGHTING

60.6%

7.2% ASE

642 avg lux

69.4%

12.3%

920

avg lux

ARTIFICIAL CIRCADIAN LIGHTING

27

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

OCCUPANT EXPERIENCE

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

INTEGRATED DESIGN PROCESS

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

COST ESTIMATION

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

- The cost is **10,436,930 USD** (251 USD/sq.ft- 316 CAD/sq.ft)
 - Including energy efficient strategies, renewables and biophilic components.

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

FACULTY ADVISORS

Dr. Mark Gorgolewski
Professor
Chair
BSc, MSc, Dip Arch, PhD, ARB UK

Hayes Zirnhelt Instructor P. Eng, M.BSc

CONSULTANT

Paul Dowsett
Program Advisor Council (DAS, Ryerson)
Principal Architect, Sustainable TO

TEAM ELEVATE

Architecture

Engineering

Energy Performance

Durability and Resilience

Embodied Environmental Impact

Comfort and Environmental Quality

Occupant Experience

Integrated Performance

Market Analysis

Abi Nareshkumar B.Arch.Sc, M.BSc (candidate)

Architecture Lead

Simran Munde B.Arch.Sc, M.BSc (candidate)

Building Envelope Lead

Pouriya Jafarpur B.Sc, M.ASc, M.BSc (candidate)

Energy Modeling Lead

Farabi Bashar B.Arch., M.BSc (candidate)

Project Manager

Mohammad Fazeli B.Tech., M.BSc (candidate)

Renewable Energy & HVAC lead

THANK YOU!

Abi Nareshkumar Simran Munde Pouriya Jafarpur Farabi Bashar Mohammad Fazeli

RYERSON UNIVERSITY

Office Building Division | TRCA Satellite Visitors Centre and Office